Subject:
Economics, Geography, Environmental Systems, Sociology, Business, Citizenship

Learning Outcomes:
• To understand that environmental issues can be intrinsically linked to economic issues
• To critique the flaws inherent in some common approaches to environmental education
• To begin to investigate a different way of approaching environmental, social and economic issues

Preparation:
• Pre-load the videos from YouTube
• Read the notes that accompany each video
• Sit the students in small discussion groups
• You can access all of the videos on YouTube from this address: http://tinyurl.com/seeingthebiggerpicture

Challenging Common Conceptions
Seeing The Bigger Picture - Lesson 1

“"The answers to our questions are everywhere; we just need to change the lens with which we see the world.”

Janine Benyus, Biomimicry 3.8T
This lesson is the first of a series of lessons which introduce students to a different way of thinking about how our economy could work: a circular economy. The series builds up exactly how a circular economy is different from the status quo, and looks at the economic, environmental and social advantages of a new approach.

This particular lesson is one part of a series. The whole series looks like this:

- (1/5) Challenging common conceptions (this lesson)
- (2/5) Exploring the circular economy
- (3/5) Understanding the challenge of ‘finite’ resources
- (4/5) Designing for a circular economy
- (5/5) The circular economy and modern agriculture

This lesson was produced by the Ellen MacArthur Foundation, which exists to accelerate the transition to a circular economy. The Ellen MacArthur Foundation works with business, government and academia to build a framework for an economy that is restorative and regenerative by design.

More educational resources on circular economy can be downloaded for free from www.ellenmacarthurfoundation.org

Introduction For The Teacher

Education about improving the environment can often come to familiar conclusions such as ‘reduce, reuse, recycle’, but what if some of those conclusions have detrimental effects in other areas, such as employment, standards of living, and the economy? In other words, what if these conclusions fail to see the bigger picture? In this activity, a series of videos is used as a stimulus for classroom discussion about how environmental goals could be aligned with economic goals.

There are seven videos and each is no longer than 1 minute. The videos each end with a challenge for the viewer. We suggest you watch them in advance and read the notes below so you are prepared for the discussion.

You can access all of the videos on YouTube from this address:
http://tinyurl.com/seeingthebiggerpicture

Lesson Structure - Overview

Each video ends with a question, so watch one video, then ask the groups to discuss their response to the question posed. Students should take notes on individual or group sheets of paper.

The videos lead the students to conclude that some familiar environmental ‘solutions’ can cause damaging effects on jobs and the economy overall. The activity then goes on to investigate a different sort of economy: a circular economy, which is regenerative by design.

This activity could be completed in one hour, but we recommend you take longer so your class has time to digest the information and properly tackle each question raised.
1) We do live in a modern, sophisticated, global economy that does bring benefits for many people.

2) The Industrial Revolution raised living standards for many people around the world through mass production and consumption.

3) There are clear downsides, as referenced in the film, including increased waste and pressure on finite resources, despite technological advances.

The following videos look at some familiar ‘solutions’ to the problems of the linear economy, but each has shortcomings if considered with the bigger picture in mind. We suggest you watch them in turn and allow your students to critique the ideas within.

Notes For Each Video

Video One: The Linear Economy

Link: https://www.youtube.com/watch?v=PU-hevOX0Qo

This video ends with the question: *We can’t sustain this ‘take-make-dispose’ model – what’s the solution?*

Invite students to share their answers to this question, writing up their responses at the front of the class where everyone can see them.

Some key points about the way the economy operates:

1) We do live in a modern, sophisticated, global economy that does bring benefits for many people.
2) The Industrial Revolution raised living standards for many people around the world through mass production and consumption.
3) There are clear downsides, as referenced in the film, including increased waste and pressure on finite resources, despite technological advances.

The following videos look at some familiar ‘solutions’ to the problems of the linear economy, but each has shortcomings if considered with the bigger picture in mind. We suggest you watch them in turn and allow your students to critique the ideas within.

Video Two: Recycling?

Link: https://www.youtube.com/watch?v=RX14rA-tylo

This video ends with the question: *What would have to change to make recycling work better?*

RECAP: Ask your students to recap the key points of the video to check their understanding.

Evidently recycling is useful, but it is less effective with short-cycle products, such as aluminium cans and other packaging. The problem is that small losses multiply rapidly over time.

If you want to understand the mathematics behind the 90% figure, here is a link: en.wikipedia.org/wiki/rule_of_72. In practice, though, all you have to do is divide 70 by the percentage loss per year (if the loss is, for example 50% use 50 rather than 0.5) to give you the number of cycles before half the quantity is lost.

In the video, we learned that today’s stock of aluminium cans would last for approximately 14 cycles until the whole stock is in landfill, and bear in mind that’s with a vastly increased recycling rate – we don’t recycle anywhere near 90%. And note this: nobody reasonably expects 100% recycling to be possible, so it’s always going to mean some losses.

DISCUSS: Encourage students to think beyond the example – why might aluminium cans be easier to recycle than other products? Are most of the products that students use this simple, or are they more complex? What about packaging, even?
Video Three: Use Less?

Link: https://www.youtube.com/watch?v=mJFdW_Y4JDY

This video ends with the question: *What would have to change to allow for using less to be ok?*

It’s an attractive moral position to suggest we can all change our lifestyles and use a little less. But one person’s income results from another person’s expenditure, so, as the video suggests, *using less can ultimately lead to recession.*

As with the last video, when we look at the bigger picture, beyond the individual, you get a different result. Moderation by one person is fine, moderation by everybody leads to problems…

DISCUSS: Return to the question: ‘What would have to change to allow for using less to be okay?’ Suggest we need to consider the way businesses operate. Is there a way of keeping money flowing around the system whilst not depleting more resources? Perhaps the idea is to not sell products, but to sell the services which come from them, e.g. subscribing to a car-sharing service rather than buying a car. And perhaps we need to design those cars in a way that allows us to use the materials again…

Advanced question: Why might it be hard for a politician to campaign for us to ‘use less’?

Video Four: Last Longer?

Link: https://www.youtube.com/watch?v=a4dbNnIcbbc

This video ends with the question: *Could longer lasting products work? How?*

DISCUSS: What are the challenges of making longer lasting products successful?

We want new products, but we also want the materials and components within those products to have another use. To keep up with technology, products that are likely to become obsolete very rapidly – like a mobile phone – need to be designed in such a way that they can be upgraded and the materials can be recovered. Perhaps products should have a **defined use period**. In other words, it is expected that they will be moved on and the materials be reutilised. Longer lasting products could work but there is a danger that a drop in consumption will result in a drop in spending in the economy as a whole (which affects jobs and, ultimately, standards of living).

Advanced question: What would be the effect on businesses, employees and the government if products were designed to last longer?

Video five: More Efficient?

Link: https://www.youtube.com/watch?v=u-qCn2tRpw

This video ends with the question: *What would we have to change to make efficiency really helpful?*

Introduce the idea that this puzzle is called the ‘paradox of efficiency’. From an **environmental** perspective, more spending on more stuff – aided by efficiencies – is a bad thing if the stuff still uses the linear, *take, make and dispose* system.
After all, in this scenario the ‘stuff’ is still wasteful of finite resources, and has related negative externalities, such as environmental spoiling. So, the impact per unit may be going down, but the overall negative effect still increases.

But if the system was effective – i.e. it worked well – then our stuff would be made in a way that considered how to use resources again and again, using non-toxic materials and substances, and is powered by renewable energy. Efficiencies within that system would be a good thing.

Graph from Forbes. Note the disconnect between productivity and wages, which began in the 1970s.

From an economic perspective, there is no problem with efficiency unless wages don’t keep up. Recently they have not: wages have been stagnating in many countries for several decades, and increasing levels of credit (loaned money) are required to bridge the gap between what people earn and what they spend…so what happens when credit is no longer available?

What people need is income, not just lowered prices. If we designed a system that cycled and cascaded resources (products and materials) then people and businesses could make use of them, add value to them, and sell them to each other to create income.

Efficiency has to be balanced by opportunities for income generation. Material flows have to be effective to close the loop – this keeps materials in circulation and creates new economic opportunities.

Advanced questions: (1) Why might the overall negative effect on the environment increase, even if the process of production becomes more efficient, and prices drop?
(2) What is the difference between an efficient system and an effective system? Which is most sensible to aim for?
What is the purpose of ‘green’ products?
Do ‘green’ products always help us meet that purpose?
Is it easy to make the ‘right’ choices as a consumer?
Does the ‘green’ label help us choose, or do we need to become experts in every product to understand their environmental and social impact?
Is it really fair that unless you can afford to pay a premium you have to choose unhealthy food, damaging products and polluted skies?
What if we changed the system instead, so that all products had a positive impact?

And how can we change the system? Well, that’s what we’re going to get onto soon…

Advanced questions: (1) Are ‘green’ products always good for the planet? Or are they often ‘less bad’?
(2) Are companies acting hypocritically when they produce a ‘green’ range alongside their regular products?

What will happen when there are even more people?

Your students might point out that world population is also increasing, and that this factor should be taken into consideration. It could lead to increasing demand, potentially leading to rising prices and, ultimately, fewer resources.

It is estimated that the world population will grow from the current estimate of 7 billion today to 9 - 11 billion by 2050. (see diagram on the next page).

The question then, is how can we change things to accommodate for the rising demand and welcome these new people to the planet?
We recommend you show the graphic to your students and ask them to imagine what effect these three scenarios would have on the use of finite materials:

1. A growing world population
2. A stable world population
3. A shrinking world population

Ask your students: if you think about the long term, did any of the scenarios solve the problem?

The answer of course is that they do not, because even in scenario 3, fewer people may still individually increase their use of finite materials, with the net effect being the same or worse as the other scenarios.

Now encourage your students to think hypothetically: If we had a system where production and consumption were benign, at worst, why would we be concerned about the number of people?

Recap and reflect: What links all of the ‘eco-friendly’ concepts explored in this lesson?

They tend to only consider the short-term, they can have negative economic impacts and they all rely on isolated actions, rather than considering the whole system.

We’ve got to bring the bigger picture and a longer-term perspective to the table, in a way that still makes economic sense and spins off social and environmental benefits. And we can do this by learning from living systems, especially since we know living systems have an impressive 3.8 billion year-old track record.

The next video explores this point...
Video Seven – How Do Other Species Live?

Link: https://www.youtube.com/watch?v=N6GNb0zTc2s

This video ends with the question: What are the rules [for benign production]?

The different elements of the lesson all point to the idea that there is a different way of seeing production and consumption. Support your class to reach conclusions from the lesson, by applying what they have learnt to consider why ants might be a good model for production and consumption. How is this different to the way our system currently operates?

Key points include:

• Their biomass is greater than that of humans, yet their impact on the environment is positive.
• They are adapted to the system, i.e. all their waste is food for something else, they live off renewable energy, they are diverse in their functions, and they restore natural capital by, for example, rebuilding soils.
• They are an effective species (not just efficient) – they make the whole system thrive, as well as guaranteeing their own survival.

Extension activity: The Global Goals

1. Remind students of the Global Goals for Sustainable Development by showing the Goals Matrix (downloadable here: http://www.globalgoals.org/resource-centre/the-basics/)
2. Ask students to identify which of the Global Goals today’s lesson linked to.
3. Ask the students if they would modify any of the Global Goals – or add new Goals – to match with what they have learned today.
4. Note that each Goal contains a set of targets – these can be accessed at www.globalgoals.org. If your students are happy with the Global Goals they have chosen for this lesson, ask them to suggest targets for their Goals, and then check their targets against those on the website.

One possible response to the challenges we face is a circular economy. The next lesson in this series – Exploring the circular economy - explores that concept.

Take Action for the Global Goals

As an educator you have the power to channel students’ positive energies and help them believe that they are not powerless, that change is possible, and that they can drive it.

How To Take Action - Right Now:
• Write to your local government representative, tell them how the circular economy can help achieve the Global Goals and ask them what action they are taking toward Goal 12 specifically.
• Make a 30-second video or design a poster about the circular economy and its links to the #GlobalGoals and share it with World’s Largest Lesson on Facebook or Twitter @theworldslesson @circulareconomy

How To Take Action - Deeper Engagement:
• For deeper learning and impact, students can also take part in projects to make change for the Goals in their local communities.

Visit the “Take Action” page on our website: www.globalgoals.org/worldslargestlesson and find organisations, resources and lesson packs to help you get started.